A Characterization for Locally Projectively Flat Berwald Type (α, β)-Metrics

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a class of locally projectively flat Finsler metrics

‎In this paper we study Finsler metrics with orthogonal invariance‎. ‎We‎ ‎find a partial differential equation equivalent to these metrics being locally projectively flat‎. ‎Some applications are given‎. ‎In particular‎, ‎we give an explicit construction of a new locally projectively flat Finsler metric of vanishing flag curvature which differs from the Finsler metric given by Berwald in 1929.

متن کامل

On locally dually flat general (α, β)-metrics

Locally flat Finsler metrics arise from information geometry. Some speciel locally dually flat Finsler metrics had been studied in Cheng et al. [3] and Xia [4] respectively. As we konw, a new class of Finsler metrics called general (α, β)-metrics are introduced, which are defined by a Riemannian metrics α and 1-form β. These metrics generalize (α, β)-metrics naturally. In this paper, we give a ...

متن کامل

Two-dimensional Complex Berwald Spaces with (α, Β)-metrics

In this paper we study the two-dimensional complex Finsler spaces with (α, β)-metrics by using the complex Berwald frame. A special approach is dedicated to the complex Berwald spaces with (α, β) metrics. We establish the necessary and sufficient condition so that the complex Randers and Kropina spaces should be complex Berwald spaces, and we will illustrate the existence of these spaces in som...

متن کامل

Projectively Flat Finsler Metrics of Constant Curvature

It is the Hilbert’s Fourth Problem to characterize the (not-necessarilyreversible) distance functions on a bounded convex domain in R such that straight lines are shortest paths. Distance functions induced by a Finsler metric are regarded as smooth ones. Finsler metrics with straight geodesics said to be projective. It is known that the flag curvature of any projective Finsler metric is a scala...

متن کامل

On Randers Change of Matsumoto Metric (communicated by Krishnan Lal Duggal)

In this paper we study the properties of special (α, β)-metric α α−β + β, the Randers change of Matsumoto metric. We find a necessary and sufficient condition for this metric to be of locally projectively flat and we prove the conditions for this metric to be of Berwald and Douglas type.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pure Mathematics

سال: 2015

ISSN: 2160-7583,2160-7605

DOI: 10.12677/pm.2015.54023